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1. McKean-Vlasov equation

consider the non-linear McKean-Vlasov equation with

• a confinement potential V : Rd → R and

• an interaction potential W : Rd × Rd → R (between two
particles) so that W (x, y) = W (y, x):

∂tνt = ∆νt +∇ · (νt∇V ) +∇ · (νt∇(W ~ νt)) (1)

where (νt)t≥0 is a flow of probability measures on Rd with ν0
given,∇ is the gradient,∇· is the divergence, and

(W ~ ν)(x) =

∫
Rd

W (x, y)dν(y). (2)
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It corresponds to the self-interacting diffusion

dXt =
√

2dBt −∇V (Xt)dt−∇W ~ νt(Xt)dt (3)

where νt is the law of Xt.
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An important question is

1) whether does limt→+∞ νt = ν∞ exist ?

The basic assumption is that ν∞, equilibrium state of the MV
equation

∆ν∞ +∇ · (ν∞∇V ) +∇ · (ν∞∇(W ~ ν∞)) = 0

must be unique. In statistical physics, that means no phase tran-
sition.

2) Is there the exponential convergence in the above conver-
gence ?
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Carrillo-McCann-Villani’s theorem

Introduce the free energy

Ef(ν) := H(ν|α) +
1

2

∫∫
W (x, y)dν(x)dν(y)

= H(ν| exp(−V (x)−
1

2
W ~ ν)) + c

(4)

where
α(dx) =

1

C
e−V (x)dx.

Then solution ν∞ of the stable MV equation is the critical point
of Ef .

The corresponding mean field entropy

HW (ν) := Ef(ν)− inf
ν∈M1(Rd)

Ef(ν). (5)
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Theorem 1 (Carrillo-McCann-Villani 03) Assume that

∇2V ≥ γI, γ > 0

and W (x, y) = W0(x− y) with even and convex W0. Then

HW (νt) ≤ e−γtHW (ν0).

Ideas:

1) The MV equation is the gradient flow

∂tνt = −∇OVHW (νt)

2) Prove that
∇2
OVHW ≥ γ.
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F.Y. Wang 21
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2. Mean-field particle system

The McKean-Vlasov equation is the ideal limiting model of mean
field particle system below

dXN
i (t) =

√
2dBi(t)−∇V (XN

i (t))dt

−
1

N − 1

∑
j 6=i

∇xW (XN
i (t), XN

j (t))dt,
(6)

where i = 1, · · · , N,B1(t), · · · , BN(t) are N independent
Brownian motions taking values in Rd.
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Its generator L(N) is given by

L(N)f(x1, · · · , xN) =
N∑
i=1

L(N)
i f(x1, · · · , xN)

L(N)
i f := ∆if −∇iV (xi) · ∇i

−
1

N − 1

∑
j 6=i

(∇xW )(xi, xj) · ∇if

(7)
for any smooth function f on (Rd)N , where∇i denotes the gra-
dient w.r.t. xi, ∆i the Laplacian w.r.t. xi, and x · y = 〈x, y〉
denotes the Euclidean inner product.
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The unique invariant probability measure of (6) is

µ(N) =
1

ZN
exp {−HN(dx1, · · · , dxN)} dx1 · · · dxN (8)

where

HN(x1, · · · , xN) :=
N∑
i=1

V (xi) +
1

N − 1

∑
1≤i<j≤N

W (xi, xj)

is the Hamiltonian, and ZN is the normalization constant called
partition function in statistical mechanics, which is assumed to
be finite throughout the paper. Without interaction (i.e. W = 0

or constant), µ(N) = α⊗N (i.e. the particles are independent),
where

dα(x) =
1

C
e−V (x)dx, C =

∫
e−V (x)dx.
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Formally
1

N

N∑
i=1

δXi
t
→ νt

and then
law of (X1

t )→ νt.

That is the theory of propagation of chaos, see Sznitmann 91.

How to establish propagation of chaos when W is singular is a
very challenging question: much recent progresses!
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Our goal:

to remove the convexity assumption in the work of Carrillo-McCann-
Villani.

Our approach:

To establish the uniform log-Sobolev inequality forµ(N) and show
that it implies the exponential convergence of the MV equation.
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3. Uniform Poincaré inequality

Introduce the dissipativity rate of the drift of one particle at dis-
tance r > 0 :

b0(r) ≥− 〈
x− y
|x− y|

, (∇V (x)−∇V (y))

+ (∇xW (x, z)−∇xW (y, z))〉

for all x, y, z ∈ Rd : |x− y| = r.

This dissipativity coefficient appeared in Chen and Wang (95,
96, 97).
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Assume the Lipschitzian spectral gap condition for one particle

cLip,m :=
1

4

∫ ∞
0

exp

{
1

4

∫ s

0

b0(u)du

}
sds < +∞. (9)

In fact in W. (JFA09), we have proved that for one single particle
generator

‖[∆− (∇U −∇xW (·, z) · ∇)]−1‖Lip ≤ cLip,m.
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Theorem 2 (Essentially due to Ledoux 01) Assume that there is
some constant h > − 1

cLip,m
such that for any (x1, · · · , xN) ∈

(Rd)N ,

1

N − 1
(1i 6=j∇2

x,yW (xi, xj))1≤i,j≤N ≥ hIdN (10)

in the order of definite nonnegativity for symmetric matrices,
where In is the identity matrix of order n. Then m = m(N)

satisfies the following uniform Poincaré inequality(
1

cLip,m
+ h

)
Varµ(N)(f) ≤

∫
(Rd)N

|∇f |2dµ(N) (11)

One can also use the result of W. (AP06) to obtain a similar re-
sult based on the Dobrushin’s uniqueness condition, which be-
comes different from (10).
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4. Uniform log-Sobolev inequality

Theorem 3 (Guillin, Liu, Wu, Zhang 19) Assume that

1. for some best constant ρLS,m > 0, the conditional marginal
distributions µi := µ(dxi|xî) on Rd satisfy the log-Sobolev
inequality :

ρLS,mEntµi
(f2) ≤ 2

∫
|∇f |2dµi

for all i and xî ;

2.
γ0 = cLip,m sup

x,y∈Rd,|z|=1

|∇2
x,yW (x, y)z| < 1. (12)

which implies Dobrushin-Zegarlinski uniqueness condition
(no phase transition)
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then µ(N) satisfies the uniform log-Sobolev inequality

ρLS,m

(1− γ0)2
Entµ(N)(f2) ≤ 2

∫
(Rd)N

|∇f |2dµ(N)

Or equivalently

ρLS,m

(1− γ0)2
H(ν|µ(N)) ≤ 2I(ν|µ(N))

where for ν = hµ(N)

I(ν|µ(N)) =

∫
|∇
√
h|2dµ(N) =

1

4

∫ |∇h|2
h

dµ(N),

is the Fisher-Donsker-Varadhan information.
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The difficulty:

How to verify the condition of Dobrushin-Zegarlinski ?

The key :

the result of the Lipschitzian norm of (−L1)
−1 for one single

particle, obtained by W. (JFA09).
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5. Exponential convergence in entropy of MV

The substituter of the Fisher-Donsker-Varadhan’s information for
the MV equation is: if ν = f(x)dx,

∫
|x|2dν(x) < +∞ and

∇f ∈ L1
loc(R

d) in the distribution sense,

IW (ν) :=
1

4

∫
|
∇f(x)

f(x)
+∇V (x) + (∇xW ~ ν)(x)|2dν(x),

(13)
and +∞ otherwise.

Theorem 4 Assume the uniform marginal log-Sobolev inequal-
ity, i.e. ρLS,m > 0, and the uniqueness condition (12). Then

1. the minimizer ν∞ of HW overM1(Rd) is unique;
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2. the following (nonlinear) log-Sobolev inequality

ρLSHW (ν) ≤ 2IW (ν), ν ∈M1(Rd) (14)

holds, where

ρLS := lim sup
N→∞

ρLS(µ(N)) ≥
ρLS,m

(1− γ0)2
.

3. The following Talagrand’s transportation inequality holds

ρLSW
2
2 (ν, ν∞) ≤ 2HW (ν), ν ∈M1(Rd) (15)

4. for the solution νt of the McKean-Vlasov equation with the
given initial distribution ν0 of finite second moment,

HW (νt) ≤ e−t·ρLS/2HW (ν0), t ≥ 0 (16)
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and in particular

W 2
2 (νt, ν∞) ≤

2

ρLS
e−t·ρLS/2HW (ν0), t ≥ 0 (17)

Ideas of proof :

1

N
H(ν⊗N |µ(N))→ HW (ν)

and

1

N
I(ν⊗N |µ(N))→ IW (ν)
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6. Two examples

Example 1 (Curie-Weiss model) Let d = 1, V (x) = β(x4/4 −
x2/2), W (x, y) = −βKxy where β > 0. We have

cLip,m ≤
√
π

β
eβ/4.

So that

γ0 ≤ cLip,m‖∇2
x,yW‖∞ ≤

√
πβeβ/4|K|

which will be smaller than 1 if β or K is sufficiently small.
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Example 2 (Quadratic interaction model) Let d = 1, V (x) =

β(x4/4−x2/2), W (x, y) = W0(x− y), W0(z) = −βKz2/2
where β,K > 0. We have

cLip,m ≤
√
π/βeβ(1+K)2/4

and
γ0 ≤

√
πβKeβ(1+K)2/4.
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——————

Thanks !

——————


