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1. McKean-Vlasov equation
consider the non-linear McKean-Vlasov equation with
e a confinement potential V' : R? — R and

e an interaction potential W : R? x R? — R (between two
particles) so that W (x,y) = W (y, x):

atl/t = Al/t + V. (I/tVV) + V. (I/tV(W ® Vt)) (1)

where (v1):>0 is a flow of probability measures on R? with v
given, V is the gradient, V- is the divergence, and

W sv)(@) = [ W, @



It corresponds to the self-interacting diffusion
dX; = V2dB; — VV (X,)dt — VW ® v,(X)dt  (3)

where v, is the law of X;.



An important question is
1) whether does lim;_, o, vy = v €XiSt ?

The basic assumption is that v, equilibrium state of the MV
equation

AVpo + V: (Vo VV) 4+ V- (oo V(W ® 1)) =0
must be unique. In statistical physics, that means no phase tran-

sition.

2) Is there the exponential convergence in the above conver-
gence ?



Carrillo-McCann-Villani’'s theorem

Introduce the free energy
1
By(v) i= Hvla) + 5 [[ W(e,y)dv(@)dv(y)
(4)
1
= H(v|exp(—V(x) — EW ®v))+c

where .
a(de) = —e V@dxg.
C

Then solution v, of the stable MV equation is the critical point
of Ef.

The corresponding mean field entropy

Hy(v) = Ey(v) — _inf  E;(v). 5)



Theorem 1 (Carrillo-McCann-Villani 03) Assume that
V2V > ~I,v> 0
and W (x,y) = Wy(x — y) with even and convex Wy. Then

Hw(I/t) S e_thw(VO).

Ideas:

1) The MV equation is the gradient flow

Oy = —VOVHW(Vt)

2) Prove that
Vi Hw > 7.
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2. Mean-field particle system

The McKean-Vlasov equation is the ideal limiting model of mean
field particle system below

dXN(t) = V2dB;(t) — VV (XN (t))dt

1
- Y VW (XN @), XN @)at,
g
where ¢ = 1,.--.- ,N, Bq(t),--- , Bxn(t) are N independent

Brownian motions taking values in R9.



lts generator L&) is given by

N
E(N)f(wl, 500 ,wN) — ZLEN)f(wl’ 500 ,wN)

=1

cN = Af— ViV(xi) -V,

> _(VaW)(xi, ;) - Vif
JF#i

(7)
for any smooth function f on (R9)¥, where V; denotes the gra-

dient w.r.t. x;, A; the Laplacian w.rt. =;, and - y = (x,y)
denotes the Euclidean inner product.

N —1



The unique invariant probability measure of (6) is

1
pN) = Z—exp{—HN(dml,--' ydryn)}dxy---dry  (8)
N

where

N
Hy(w1,--+ ,@y) i= Y V(w) + ﬁ d o Wi, x;)
i=1 1<i<j<N
is the Hamiltonian, and Zx is the normalization constant called
partition function in statistical mechanics, which is assumed to
be finite throughout the paper. Without interaction (i.,e. W = 0
or constant), u™ = a®¥ (i.e. the particles are independent),
where
da(zx) = %e_v(w)daj, C = /e_V(x)dm.



Formally
= i —> UV
N =1 . t

and then
law of (X}) — v

That is the theory of propagation of chaos, see Sznitmann 91.

How to establish propagation of chaos when W is singular is a
very challenging question: much recent progresses!



Our goal:

to remove the convexity assumption in the work of Carrillo-McCann
Villani.

Our approach:

To establish the uniform log-Sobolev inequality for (™) and show
that it implies the exponential convergence of the MV equation.



3. Uniform Poincaré inequality

Introduce the dissipativity rate of the drift of one particle at dis-
tancer > 0 :

bo(r) > — (-, (VV(2) — VV(y))

|z yl
+ (VW (z,2) — V. W (y, 2)))

forallz,y,z € R?: | — y| = r.

This dissipativity coefficient appeared in Chen and Wang (95,
96, 97).



Assume the Lipschitzian spectral gap condition for one particle
1 [o° 1 [®
CLipym ‘= —/ exp —/ bo(u)du p sds < +oco. (9)
4 Jo 4 Jo

In fact in W. (JFAQ9), we have proved that for one single particle
generator

A = (VU = VoW (-, 2) - V)] lLip < CLipm-



Theorem 2 (Essentially due to Ledoux 01) Assume that there is
some constant h > —CL,l such that for any (x1,--+ ,xNn) €
(RN,

1
ﬁ(li#Vi’yW(mi, x;))i<ij<n > hlan (10)

in the order of definite nonnegativity for symmetric matrices,
where I,, is the identity matrix of order n. Then m = m(Y)
satisfies the following uniform Poincaré inequality

1
( +h> Var,m (f) g/ IV FI2dp™)  (11)
CLip,m (RN

One can also use the result of W. (AP06) to obtain a similar re-
sult based on the Dobrushin’s uniqueness condition, which be-
comes different from (10).



4. Uniform log-Sobolev inequality
Theorem 3 (Guillin, Liu, Wu, Zhang 19) Assume that

1. for some best constant prs.m > 0, the conditional marginal
distributions p; := p(dz;|x*) on R satisfy the log-Sobolev
inequality :

pusmEnt,,(£) <2 [ V5] dp

for all i and = ;

Yo = CrLipm  Sup Vi W(z,y)z| <1.  (12)
:c,yERd,|z|:1

which implies Dobrushin-Zegarlinski uniqueness condition
(no phase transition)



then uN) satisfies the uniform log-Sobolev inequality

PLS,m 2 2 (N)
L Bnte(f) <2 [ VEPdu
(1—)* " (RN
Or equivalently
PLS,m
mﬂ(vlu“")) < 2I(v|p™))

where forv = hu®)

1 [|Vh|?
I(w|u™) = / 1V VRPN = - / L,

is the Fisher-Donsker-Varadhan information.



The difficulty:
How to verify the condition of Dobrushin-Zegarlinski ?
The key :

the result of the Lipschitzian norm of (—£;)~! for one single
particle, obtained by W. (JFAQ9).



5. Exponential convergence in entropy of MV

The substituter of the Fisher-Donsker-Varadhan’s information for
the MV equation is: if v = f(z)dz, [ |z|*dv(z) < +oo and
Vf € Lt (R?) in the distribution sense,

loc

1 [ V@) :
Iww) = [ | ) IV @)+ (VW 0 ) (@) (),
(13)

and 4+ oo otherwise.

Theorem 4 Assume the uniform marginal log-Sobolev inequal-
ity, i.e. prs.m > 0, and the uniqueness condition (12). Then

1. the minimizer v, of Hy, over My (R?) is unique;



2. the following (nonlinear) log-Sobolev inequality
pLus(l/) S 2Iw(l/), Vv E Ml(Rd) (14)
holds, where

o PLS,m
prs = limsup prs(p™Y)) > —
N—yo0 (1 — o)

3. The following Talagrand’s transportation inequality holds

pLSW22(Va Vo) < 2Hw (v), v € Ml(Rd) (15)

4. for the solution v; of the McKean-Vlasov equation with the
given initial distribution v, of finite second moment,

Hyy (1) < e VPes/2Hy (1), t > 0 (16)



and in particular

2
W3 (vt Vo) < p—e_t'pLS/zHW(VO), t>0 (17)
LS

ldeas of proof :

1
SHEN ™) - Hy ()

and

1
L@ |E™) = Iy (v)



6. Two examples

Example 1 (Curie-Weiss model) Letd = 1, V(z) = B(z*/4 —
x?/2), W(x,y) = —BKzy where 3 > 0. We have

[ TC
CLip,m S Eeﬁ/4'

Yo S CLip,m”Vi,yW”oo S 7T/Beﬁ/‘ll-[{'

So that

which will be smaller than 1 if 3 or K is sufficiently small.



Example 2 (Quadratic interaction model) Letd = 1, V(x) =
B(a*/4—32/2), W (=,y) = Wo( —y), Wo(z) = —BK=2/2
where B8, K > 0. We have

CLipm < 7r/,3€ﬂ<1+K)2/4

and
o < /TBKePIHE) /4,



Thanks !




